Биометрия

ТЕХНОЛОГИИ

  • Выделение лиц на изображениях
  • Индексирование и быстрый поиск лиц в базе
  • Распознавание лиц
  • Выделение основных элементов лица (глаза, брови, нос, рот)
  • Слежение за глазами и направлением взгляда
  • Распознавание жестов и движений
  • Трехмерная реконструкция лиц
  • Построение строго фронтальных и ракурсных изображений лиц

Технологии, продукты и проекты ИИТ в области биометрии

В последние годы во всем мире наблюдается все возрастающий интерес к методам распознавания и идентификации личности. Основные пути и способы решения этих задач лежат в области разработки биометрических систем. В биометрических системах для распознавания человека используется совокупность биометрических характеристик, основанных на биологических особенностях человеческого тела. В качестве таких биометрических характеристик могут выступать: голос, почерк, отпечатки пальцев, геометрия кисти руки, рисунок сетчатки или радужной оболочки глаза, лицо и ДНК.

Биометрическая защита более эффективна в сравнении с такими методами, как использование паролей, PIN-кодов, смарт-карт, жетонов (tokens) или технологии PKI (инфраструктура открытых ключей), поскольку биометрия позволяет идентифицировать именно конкретного человека, а не устройство. Традиционные методы защиты не исключают возможности потери или кражи информации, вследствие чего она становится доступной незаконным пользователям. Уникальный биометрический идентификатор, каковым является, например, отпечаток пальца или изображение лица, служит ключом, который невозможно потерять. Биометрическая система безопасности позволяет отказаться от парольной защиты либо служит для ее усиления.

Статические методы биометрической аутентификации основываются на физиологической (статической) характеристике человека, то есть уникальной характеристике, данной ему от рождения и неотъемлемой от него. К этой группе относятся следующие методы аутентификации.

  1. По отпечатку пальца. В основе этого метода лежит уникальность для каждого человека рисунка папиллярных узоров на пальцах. Отпечаток пальца, полученный с помощью специального сканера, преобразуется в цифровой код (свертку) и сравнивается с ранее введенным эталоном. Данная технология является самой распространенной по сравнению с другими методами биометрической аутентификации.
  2. По форме ладони. Данный метод построен на геометрии кисти руки. С помощью специального устройства, состоящего из камеры и нескольких подсвечивающих диодов (включаясь по очереди, они дают разные проекции ладони), строится трехмерный образ кисти руки, по которому формируется свертка и распознается человек.
  3. По расположению вен на лицевой стороне ладони. С помощь инфракрасной камеры считывается рисунок вен на лицевой стороне ладони или кисти руки, полученная картинка обрабатывается, и по схеме расположения вен формируется цифровая свертка.
  4. По сетчатке глаза. Вернее, это способ идентификации по рисунку кровеносных сосудов глазного дна. Для того чтобы этот рисунок стал виден, человеку нужно посмотреть на удаленную световую точку, при этом подсвеченное глазное дно сканируется специальной камерой.
  5. По радужной оболочке глаза. Рисунок радужной оболочки глаза также является уникальной характеристикой человека, причем для ее сканирования достаточно портативной камеры со специализированный программным обеспечением, позволяющим захватывать изображение части лица, из которого выделяется изображение глаза, из которого в свою очередь выделяется рисунок радужной оболочки, по которому строится цифровой код для идентификации человека.
  6. По изображению или форме лица. В данном методе идентификации строится двумерный или трехмерный образ лица человека. На лице выделяются контуры бровей, глаз, носа, губ и т. д., вычисляется расстояние между ними и строится не просто образ, а еще множество его вариантов на случаи поворота лица, наклона, изменения выражения. Количество образов варьируется в зависимости от целей использования данного способа (для аутентификации, верификации, удаленного поиска на больших территориях и т. д.).
  7. По термограмме лица. В основе данного способа аутентификации лежит уникальность распределения на лице артерий, снабжающих кровью кожу, которые выделяют тепло. Для получения термограммы используются специальные камеры инфракрасного диапазона. В отличие от предыдущего, этот метод позволяет различать даже близнецов.
  8. По ДНК. Преимущества данного способы очевидны, однако используемые в настоящее время методы получения и обработки ДНК работают настолько долго, что такие системы используются только для специализированных экспертиз.
  9. Другие методы. Существуют еще такие уникальные способы — как идентификация по подногтевому слою кожи, по объему указанных для сканирования пальцев, форме уха, запаху тела и т. д.

Как видно, большинство биометрических технологий данной группы связано с анализом изображений и реализуется теми или иными методами компьютерного зрения.

 

Характеристики биометрических систем

Показателями надежности биометрических систем могут служить вероятности ошибок первого и второго рода. Ошибки первого рода определяют вероятность ложного отказа (FRR, False Rejection Rate) и возникают при отказе в доступе легальному пользователю системы. Ошибки же второго рода показывают вероятность ложного допуска (FAR, False Acceptance Rate) и появляются при предоставлении доступа постороннему лицу. FRR и FAR связаны обратной зависимостью. Современные биометрические системы имеют очень большой разброс этих характеристик.

Биометрическую систему также можно характеризовать уровнем равной вероятности ошибок первого и второго рода (EER, Equal Error Rates) — точкой, в которой вероятность ошибки первого рода равна вероятности ошибки второго рода. На основании EER можно делать выводы об относительных достоинствах и недостатках разных биометрических методов. Чем ниже уровень EER, тем выше качество системы.

Еще один параметр, влияющий на выбор и установку биометрической системы, — пропускная способность. Она характеризует время, которое требуется человеку для взаимодействия с данным биометрическим устройством.

Сортировать и сравнивать описанные выше биометрические методы по показаниям ошибок первого рода очень сложно, так как они сильно разнятся для одних и тех же методов из-за сильной зависимости от оборудования, на котором они реализованы.

По показателям ошибок второго рода общая сортировка методов биометрической аутентификации выглядит так (от лучших к худшим):

  1. ДНК;
  2. радужная оболочка глаза, сетчатка глаза;
  3. отпечаток пальца, термография лица, форма ладони;
  4. форма лица, расположение вен на кисти руки и ладони;
  5. подпись;
  6. клавиатурный почерк;
  7. голос.

Можно сделать вывод, что, с одной стороны, статические методы идентификации существенно лучше динамических, а с другой стороны — существенно дороже.

Текущее состояние технологии и перспективы дальнейших разработок

В настоящий момент общее состояние биометрических технологий в мире еще нельзя признать удовлетворительным. Скорее можно говорить о биометрии как о быстро развивающейся области исследований и приложений, в которой еще не удалось достичь требуемых показателей. Целый ряд серьезных проверок, проведенных в последнее время, показал недостаточную надежность таких систем.

Например, полицейское управление города Тампа, штат Флорида (США), после двух лет эксплуатации деинсталлировало за бесполезностью программное обеспечение опознания лиц, работавшее совместно с камерами наружного наблюдения. Сеть таких камер позволяла вести надзор за публикой в городском парке развлечений Айбор-сити. Предполагалось, что техника в комплекте с программой для сканирования/опознания лиц, подсоединенной к базе из 30 тысяч известных правонарушителей и сбежавших из дома детей, повысит эффективность работы полиции. Однако за два года система не дала ни единого успешного результата, будь то автоматическое опознание разыскиваемых или арест подозреваемых. Программное обеспечение было предоставлено компанией Identix, одним из ведущих в США поставщиков биометрических технологий опознания по лицу и отпечаткам пальцев.

Известен отчет японского криптографа Цутомо Мацумото, скомпрометировавшего более десятка систем опознания пользователя по отпечатку пальца. Недавно аналогичное обширное исследование было предпринято немецким компьютерным журналом «c’t». Выводы экспертов однозначны: биометрические системы для потребительского рынка пока не достигли того уровня, когда их можно рассматривать в качестве реальной альтернативы традиционным паролям. Так, систему опознания лиц FaceVACS-Logon немецкой фирмы Cognitec удается ввести в заблуждение, просто предъявив фотографию зарегистрированного пользователя. Для обмана более изощренного ПО, анализирующего характерные признаки живого человека (мимические движения лица) может быть успешно применен экран ноутбука, на котором демонстрируется видеоклип с записью лица. Несколько сложнее обмануть систему Authenticam BM-ET100 фирмы Panasonic для опознания радужной оболочки глаза, поскольку здесь инфракрасные датчики реагируют не только на характерный узор изображения радужки, но и на иную глубину расположения зрачка. Однако, если проделать небольшое отверстие на месте зрачка в фотоснимке глаза, куда при опознании заглядывает другой человек, систему удается обмануть. Что же касается систем опознания пользователя по отпечатку пальца с помощью емкостного сенсора на мышке или клавиатуре, то здесь самым распространенным способом обмана является повторное «оживление» уже имеющегося отпечатка, оставленного зарегистрированным пользователем. Для «реанимации» остаточного отпечатка иногда бывает достаточно просто подышать на сенсор, либо приложить к нему тонкий полиэтиленовый пакет, наполненный водой. Подобные трюки, в частности, весьма удачно опробованы на мышках ID Mouse фирмы Siemens, оснащенных емкостным сенсором FingerTIP производства Infineon. Наконец, «искусственный палец», отлитый в парафиновой форме из силикона, позволил исследователям одолеть все шесть протестированных дактилоскопических систем.

Однако, несмотря на общую негативную оценку современного состояния биометрических систем идентификации личности, во всем мире наблюдается тенденция к развитию исследований и разработок в области биометрии. При этом одной из основных тенденций последнего времени является постепенный перенос приоритетов с контактных на бесконтактные методы биометрического распознавания. Причиной этого явилось повышение требований к функциональным возможностям автоматических систем безопасности, расположенных в общественных местах (вокзалы, аэропорты, супермаркеты и т. п.), связанные с необходимостью в реальном времени выполнять необходимые действия по установлению личности присутствующих на контролируемой территории людей, причем, зачастую, скрытно, %то есть не только бесконтактно (дистанционно), но %и без специального сотрудничества (специального предъявления биометрических %признаков) со стороны идентифицируемых персон, в сложных условиях, в группе и в толпе. Созданию таких биометрических систем нового поколения препятствуют ряд специфических проблем, пока еще не имеющих адекватного решения.

Первая группа проблем связана с тем, что системы скрытного наблюдения с целью обеспечения безопасности должны работать в условиях естественного поведения человека, не предъявляющего специально свое лицо и не произносящего заранее известных ключевых фраз. В этом случае еще до решения задачи распознавания необходимо решить задачу обнаружения (определения местоположения, выделения человека в группе), да и сама задача распознавания лица и голоса в неконтролируемых условиях становится существенно сложнее. Вторая группа существующих здесь проблем связана с тем, что в случае задачи обеспечения безопасности (в отличие от задачи обеспечения контроля доступа) нет возможности опереться на сотрудничество идентифицируемой персоны даже на этапе обучения. Поэтому для обучения приходится использовать имеющиеся фрагментарные и разнородные аудио- и видеоматериалы самого различного качества и происхождения. Это еще более усложняет задачу обучения биометрической системы. Наконец, третья группа проблем связана с тем, что получаемые (с учетом перечисленных проблем) вероятности правильного распознавания и ложного обнаружения заданной персоны в естественной обстановке только по лицу или только по голосу оказываются существенно ниже показателей, требуемых для удовлетворительного функционирования ответственных систем обеспечения безопасности и контроля доступа. С этим связана необходимость использовать комплексирование результатов биометрического распознавания, полученного от разных источников информации.

Именно с решением указанных проблем могут быть связаны существенные прорывы в области биометрических технологий в ближайшие годы.

Биометрия в широком и узком смысле

Таким образом, биометрические технологий идентификации представляют собой быстро развивающееся научно-техническое направление, в результатах которого остро нуждаются такие области применения, как системы охраны и контроля доступа, системы паспортного и визового контроля, системы предупреждения преступлений и идентификации преступников, системы контроля доступа, системы учета и сбора статистики посетителей, системы идентификации удаленных пользователей и пользователей интернета, верификации кредитных карточек, криминалистической экспертизы, контроля времени посещения на предприятиях и т. д.

Помимо описанных биометрических технологий аутентификации, область «биометрии в широком смысле» включает также ряд приложений, связанных с выделением и измерением различных биологических характеристик человеческого тела, жестов, движений и т. п., предназначенных не для персональной идентификации, а для использования в спортивных, медицинских, телекоммуникационных, развлекательных и других целях.

pdf
Буклет

 
Более подробную информацию по данному вопросу вы можете найти в Wiki ресурсе «Техническое зрение» в разделе «Биометрия»